Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 23

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Structure, stability, and actinide leaching of simulated nuclear fuel debris synthesized from UO$$_{2}$$, Zr, and stainless-steel

Kirishima, Akira*; Akiyama, Daisuke*; Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Sasaki, Takayuki*; Sato, Nobuaki*

Journal of Nuclear Materials, 567, p.153842_1 - 153842_15, 2022/08

 Times Cited Count:4 Percentile:78.52(Materials Science, Multidisciplinary)

To understand the chemical structure and stability of nuclear fuel debris consisting of UO$$_{2}$$, Zr, and Stainless Steel (SUS) generated by the Fukushima Daiichi Nuclear Power Plant accident in Japan in 2011, simulated debris of the UO$$_{2}$$-SUS-Zr system and other fundamental component systems were synthesized and characterized. The simulated debris were synthesized by heat treatment for 1 to 12 h at 1600$$^{circ}$$C, in inert (Ar) or oxidative (Ar + 2% O$$_{2}$$) atmospheres. $$^{237}$$Np and $$^{241}$$Am tracers were doped for the leaching tests of these elements and U from the simulated debris. The characterization of the simulated debris was conducted by XRD, SEM-EDX, Raman spectroscopy, and M$"o$ssbauer spectroscopy, which provided the major uranium phase of the UO $$_{2}$$-SUS-Zr debris was the solid solution of U$$^{mathrm{IV}}$$O$$_{2}$$ (s.s.) with Zr(IV) and Fe(II) regardless of the treatment atmosphere. The long-term immersion test of the simulated debris in pure water and that in seawater revealed the macro scale crystal structure of the simulated debris was chemically very stable in the wet condition for a year or more. Furthermore, the leaching test results showed that the actinide leaching ratios of U, Np, Am from the UO$$_{2}$$-SUS-Zr debris were very limited and less than 0.08 % for all the experiments in this study.

JAEA Reports

Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-010, 155 Pages, 2022/06

JAEA-Review-2022-010.pdf:9.78MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles during fuel debris retrieval in Fukushima Daiichi Nuclear Power Station, TEPCO. As measures to prevent dispersion of microparticles, (1) a method to suppress the dispersion with minimum amount of water utilizing water spray etc., and (2) a method to suppress the dispersion by solidifying ...

JAEA Reports

Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-043, 116 Pages, 2021/01

JAEA-Review-2020-043.pdf:7.74MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted in FY2019. In this study, a technique to effectively suppress the scattering of fine particles has been developed, and as a result of experiments, a method of spraying with water mist was found to be an effective and applicable method for improving aerosol removal efficiency and removal rate. As a method of solidifying fuel debris to suppress fine particle scattering during cutting, geopolymer was evaluated for its strength, thermal conductivity and cutting powder. In addition, flow status of geopolymer and the temperature distribution inside RPV covered by geopolymer were simulated.

Journal Articles

Overview and outcomes of the OECD/NEA benchmark study of the accident at the Fukushima Daiichi NPS (BSAF), Phase 2; Results of severe accident analyses for Unit 2

Sonnenkalb, M.*; Pellegrini, M.*; Herranz, L. E.*; Lind, T.*; Morreale, A. C.*; Kanda, Kenichi*; Tamaki, Hitoshi; Kim, S. I.*; Cousin, F.*; Fernandez Moguel, L.*; et al.

Nuclear Engineering and Design, 369, p.110840_1 - 110840_10, 2020/12

 Times Cited Count:22 Percentile:95.22(Nuclear Science & Technology)

This is the second paper in a series of 3 in which results of severe accident analyses for Unit 2 of Fukushima Daiichi are presented, gained in Phase 2 of the OECD/NEA project "Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Plant (BSAF)". Nine organizations of six countries submitted results of their calculated severe accident scenarios for Unit 2 of Fukushima Daiichi using different severe accident codes. The present paper describes the findings of the comparison of the participants' results for Unit 2 against each other and against plant data, the evaluation of the accident progression and the final status inside the reactors. Special focus is on reactor pressure vessel status, melt release and fission product behavior and release. Unit 2 specific aspects will be highlighted and points of consensus as well as remaining uncertainties and data needs will be summarized.

JAEA Reports

Development of technology to prevent scattering of radioactive materials in fuel debris retrieval (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-037, 90 Pages, 2020/03

JAEA-Review-2019-037.pdf:7.0MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology to Prevent Scattering of Radioactive Materials in Fuel Debris Retrieval". The objective of the present study is to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles at the time of debris retrieval in Fukushima Daiichi Nuclear Power Station. In addition, as measures to prevent scattering, we will evaluate and develop methods by experiments and simulation as to; (1) a method to suppress the scattering with minimum amount of water utilizing water spray etc., and (2) a method to suppress the scattering by solidifying fuel debris.

JAEA Reports

Basic research on the stability of fuel debris including alloy phase (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2019-035, 61 Pages, 2020/03

JAEA-Review-2019-035.pdf:2.9MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic Research on the Stability of Fuel Debris Including Alloy Phase". In the present study, we focus on fuel debris consisting of oxide phase and alloy phase generated by the high-temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO$$_{2}$$-SUS system and UO$$_{2}$$-Zr(ZrO$$_{2}$$)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water. Also, we will conduct research and development to spectroscopically analyze secular changes of oxide phase and alloy phase in the simulated debris.

Journal Articles

External dose evaluation based on detailed air dose rate measurements in living environments

Sato, Tetsuro*; Ando, Masaki; Sato, Masako*; Saito, Kimiaki

Journal of Environmental Radioactivity, 210, p.105973_1 - 105973_7, 2019/12

 Times Cited Count:9 Percentile:36.49(Environmental Sciences)

A method was devised for estimation of external doses of Fukushima residents expected to return to their homes after evacuation orders are lifted. 211 residents expected to return to six towns and villages were surveyed in FY 2014, FY 2015, and FY2016. Interviewing returning residents about their expected life patterns after returning, air dose rate were measured along the reported personal trails representing their patterns of movement in daily life. Excluding 15 residents from whose homes we were unable to take air dose rate measurements, the maximum external effective dose and the average external effective dose were estimated respectively as 4.9 mSv/y and 0.86 mSv/y. Although the mean values and dispersion of external effective doses differ depending on the evacuation level, for 93.3% of all residents, the estimated external effective doses were less than 2 mSv/y. The average exposure dose at home accounts for 66.8% of the annual exposure dose.

Journal Articles

Summary of temporal changes in air dose rates and radionuclide deposition densities in the 80 km zone over five years after the Fukushima Nuclear Power Plant accident

Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Yoshida, Tadayoshi; Sato, Tetsuro*; Seki, Akiyuki; Yamamoto, Hideaki*; et al.

Journal of Environmental Radioactivity, 210, p.105878_1 - 105878_12, 2019/12

 Times Cited Count:33 Percentile:80.62(Environmental Sciences)

JAEA Reports

Cutting operation of simulated fuel assembly heating examination by AWJ

Abe, Yuta; Nakagiri, Toshio; Watatani, Satoshi*; Maruyama, Shinichiro*

JAEA-Technology 2017-023, 46 Pages, 2017/10

JAEA-Technology-2017-023.pdf:8.01MB

This is a report on Abrasive Water Jet (AWJ) cutting work carried out on specimen, which was used for Simulated Fuel Assembly Heating Examination by Collaborative Laboratories for Advanced Decommissioning Science (CLADS) molten core behavior analysis group in February 2016. The simulated fuel assembly is composed of Zirconia for the outer crucible/simulated fuel, stainless steel for the control blade and Zircaloy (Zr) for the cladding tube/channel box. Therefore, it is necessary to cut at once substances having a wide range of fracture toughness and hardness. Moreover, it is a large specimen with an approximate size of 300 mm. In addition, epoxy resin has high stickiness, making it more difficult to cut. Considering these effects, AWJ cutting was selected. The following two points were devised, and this specimen could be cut with AWJ. If it was not possible to cut at one time like a molten portion of boride, it was repeatedly cut. By using Abrasive Suspension Jet (ASJ) system with higher cutting ability than Abrasive Injection Jet (AIJ, conventional method) system, cutting time was shortened. As a result of this work, the cutting method in Simulated Fuel Assembly Heating Examination was established. Incidentally, in the cutting operation, when the cutting ability was lost at the tip of the AWJ, a curved cut surface, which occurs when the jet flowed away from the feeding direction, could be confirmed at the center of the test body. From the next work, to improve the cutting efficiency, we propose adding a mechanism such as turning the cutting member itself for re-cutting from the exit side of the jet and appropriate traverse speed to protect cut surface.

Journal Articles

Radiation imaging system using a compact $$gamma$$-ray imager mounted on a remotely operated machine

Sato, Yuki; Kawabata, Kuniaki; Ozawa, Shingo*; Izumi, Ryo*; Kaburagi, Masaaki; Tanifuji, Yuta; Terasaka, Yuta; Miyamura, Hiroko; Kawamura, Takuma; Suzuki, Toshikazu*; et al.

IFAC-PapersOnLine, 50(1), p.1062 - 1066, 2017/07

 Times Cited Count:3 Percentile:66.37(Automation & Control Systems)

Journal Articles

Study on the distribution of boron in the in-vessel fuel debris in conditions close to Fukushima Daiichi Nuclear Power Station Unit 2

Ikeuchi, Hirotomo; Piluso, P.*; Fouquart, P.*; Excoffier, E.*; David, C.*; Brackx, E.*

Proceedings of 8th European Review Meeting on Severe Accident Research (ERMSAR 2017) (Internet), 12 Pages, 2017/05

no abstracts in English

Journal Articles

Numerical study of sediment and $$^{137}$$Cs discharge out of reservoirs during various scale rainfall events

Kurikami, Hiroshi; Funaki, Hironori; Malins, A.; Kitamura, Akihiro; Onishi, Yasuo*

Journal of Environmental Radioactivity, 164, p.73 - 83, 2016/11

AA2015-0827.pdf:2.61MB

 Times Cited Count:14 Percentile:41.64(Environmental Sciences)

We performed simulations using the three-dimensional finite volume code FLESCOT to understand sediment and radiocesium transport in generic models of reservoirs with parameters similar to those in Fukushima Prefecture. The simulations model turbulent water flows, transport of sediments with different grain sizes, and radiocesium migration both in dissolved and particulate forms. To demonstrate the validity of the modeling approach for the Fukushima environment, we performed a test simulation of the Ogaki Dam reservoir over a typhoon. We simulated a set of generic model reservoirs systematically varying features such as flood intensity, reservoir volume and the radiocesium distribution coefficient. The results ascertain how these features affect the amount of sediment or $$^{137}$$Cs discharge downstream from the reservoirs, and the forms in which $$^{137}$$Cs is discharged. Silt carries the majority of the radiocesium in the larger flood events, while the clay-sorbed followed by dissolved forms are dominant in smaller events. The results can be used to derive indicative values of discharges from Fukushima reservoirs under arbitrary flood events.

Journal Articles

Japanese research activities for Fukushima-Daiichi decommissioning

Okamoto, Koji; Ogawa, Toru

Proceedings of 2016 EFCOG Nuclear & Facility Safety Workshop (Internet), 3 Pages, 2016/09

The decommissioning of the Fukushima-Daiichi Nuclear Power Plant has required and will continue to demand conducting many challenging activities, many of which do not have prior experience in the nuclear industry. International decommissioning knowledge and technology advances will be required to support the challenging work. The Collaborative Laboratories for Advanced Decommissioning Science (CLADS) was established by the Japan Atomic Energy Agency (JAEA) in April 2015. The main objectives of CLADS are the management, research and development for decommissioning at the Fukushima-Daiichi site. Not only is the coordination of research and development important to effective decommissioning, but also the management of research activities around the world. A status of the CLADS program will be provided. The CLADS central research office will be located at Tomioka Town, near the Fukushima site, in April 2017.

Journal Articles

Measurements and evaluations of air dose rates around the Fukushima NPP site, 6; Status and issues on evaluation of individual doses due to external exposures

Saito, Kimiaki; Kurihara, Osamu*; Matsuda, Norihiro; Takahara, Shogo; Sato, Tetsuro*

Radioisotopes, 65(2), p.93 - 112, 2016/02

Late information is introduced on dose evaluation due to external exposures which employ an important role in the exposures due to the Fukushima accident. First, merits and demerits of the currently used two methods, that is the estimation based air dose rates and the measurements using personal dosimeters, are discussed indicating some basic data after a fundamental concept of external dose evaluation is provided. Next, main activities are summarized on external dose measurements and evaluations after the accident. Finally, a new trial on dose evaluation in introduced.

Journal Articles

Radionuclide release to stagnant water in the Fukushima-1 Nuclear Power Plant

Nishihara, Kenji; Yamagishi, Isao; Yasuda, Kenichiro; Ishimori, Kenichiro; Tanaka, Kiwamu; Kuno, Takehiko; Inada, Satoshi; Goto, Yuichi

Journal of Nuclear Science and Technology, 52(3), p.301 - 307, 2015/03

 Times Cited Count:17 Percentile:81.12(Nuclear Science & Technology)

After the severe accident at the Fukushima-1 nuclear power plant, large amounts of contaminated stagnant water have accumulated in turbine buildings and their surroundings. This rapid communication reports calculation of the radionuclide inventory in the core, collection of measured inventory in the stagnant water, and estimation of radionuclide release ratios from the core to the stagnant water. This evaluation is based on data obtained before June 3, 2011. The release ratios of tritium, iodine, and cesium were several tens of percent, whereas those of strontium and barium were smaller by one or two orders of magnitude. The release ratios in the Fukushima accident were equivalent to those in the TMI-2 accident.

Journal Articles

Influence of radiolysis and gas-liquid partition of I-131 in accumulated water on late phase source terms at Fukushima NPP accident

Hidaka, Akihide

Proceedings of 2014 Nuclear Plant Chemistry Conference (NPC 2014) (USB Flash Drive), 12 Pages, 2014/10

During core cooling at Fukushima Daiichi NPP accident, large amount of contaminated water was accumulated in the basements of reactor buildings at Units 1 to 4. The estimated ratios of I-131 and Cs-137 quantities in water to the core inventories are 0.51%, 0.85% at Unit 1, 74%, 38% at Unit 2 and 26%, 18% at Unit 3, respectively. According to the Henry's law, certain fraction of iodine in water could be released to atmosphere. Many evaluations for I-131 release have been performed so far by MELCOR or the reverse estimation with SPEEDI. The SPEEDI reverse predicted significant release until March 26 while no prediction in MELCOR after March 17. The present study showed that iodine release from accumulated water due to radiolytic conversion from I$$^{-}$$ to I$$_{2}$$ and gas-liquid partition of I$$_{2}$$ may explain the release between March 17 and 26. This strongly suggests a need for improvement of current MELCOR approach which treats the release only from containment breaks.

Oral presentation

Development of plasma heating technology for simulation of LWR severe accident behavior, 2; Outcomes of JFY2015

Abe, Yuta; Sato, Ikken; Nakagiri, Toshio; Nagae, Yuji; Ishimi, Akihiro

no journal, , 

no abstracts in English

Oral presentation

Progress of 1F PCV contaminant analysis by TEM observation

Suzuki, Akihiro*; Kitsunai, Yuji*; Sato, Ikken

no journal, , 

Several contaminant samples from 1F1 primary containment vessel are carefully observed by transmission electron microscope to find micro-scale uranium-containing particles in their chemical forms of U-rich c-(U,Zr)O$$_{2}$$ and Zr-rich t-(Zr,U)O$$_{2}$$, which are also observed in fuel debris of TMI-2 and Chernobyl NPP-4.

Oral presentation

Dissolution rate measurements of zircon in aqueous solutions by Phase-shift interferometric microscope

Kitagaki, Toru

no journal, , 

Zircon dissolution rates under flowing aqueous solutions of pH 0 (HCl), 7 (H$$_{2}$$O), 14 (NaOH aq) were in-situ measured from the zircon surface change by Phase-shift interferometric microscope.

Oral presentation

Bayesian hierarchical methods for spatiotemporal integration of radiation air dose rates

Murakami, Haruko*; Sun, D.*; Seki, Akiyuki; Takemiya, Hiroshi; Saito, Kimiaki

no journal, , 

This study presents a Bayesian hierarchical method to integrate multiple types of radiation measurements and to estimate the spatiotemporal distribution of radiation air dose rates around the Fukushima Daiichi Nuclear Power Plant. The method incorporates the temporal evolution of dose rates by separating the log-linear decay trend and the fluctuations of air dose rates which are spatially correlated based on adjacent monitoring post data.

23 (Records 1-20 displayed on this page)